Solvents (Drug/ Substance Abuse)

A solvent (from the Latin solvō, “I loosen, untie, I solve”) is a substance that dissolves a solute (a chemically different liquid, solid or gas), resulting in a solution. A solvent is usually a liquid but can also be a solid or a gas. The maximum quantity of solute that can dissolve in a specific volume of solvent varies with temperature. Common uses for organic solvents are in dry cleaning , as paint thinners , as nail polish removers and glue solvents (acetone, methyl acetate, ethyl acetate), in spot removers , in detergents (citrus terpenes), in perfumes (ethanol), nail polish and in chemical synthesis. The use of inorganic solvents (other than water) is typically limited to research chemistry and some technological processes.

The global solvent market is expected to earn revenues of about US$33 billion in 2019. The dynamic economic development in emerging markets like China, India, Brazil, or Russia will especially continue to boost demand for solvents. Specialists expect the worldwide solvent consumption to increase at an average annual rate of 2.5% over the next years. Accordingly, the growth rate seen during the past eight years will be surpassed.

Health And Safety

Most organic solvents are flammable or highly flammable, depending on their volatility. Exceptions are some chlorinated solvents like dichloromethane and chloroform. Mixtures of solvent vapors and air can explode. Solvent vapors are heavier than air; they will sink to the bottom and can travel large distances nearly undiluted. Solvent vapors can also be found in supposedly empty drums and cans, posing a flash fire hazard; hence empty containers of volatile solvents should be stored open and upside down.

Both diethyl ether and carbon disulfide have exceptionally low autoignition temperatures which increase greatly the fire risk associated with these solvents. The autoignition temperature of carbon disulfide is below 100°C (212°F), so objects such as steam pipes, light bulbs, hotplates and recently extinguished bunsen burners are able to ignite its vapours.

Explosive Peroxide Formation
Ethers like diethyl ether and tetrahydrofuran (THF) can form highly explosive organic peroxides upon exposure to oxygen and light, THF is normally more able to form such peroxides than diethyl ether. One of the most susceptible solvents is diisopropyl ether.

The heteroatom (oxygen) stabilizes the formation of a free radical which is formed by the abstraction of a hydrogen atom by another free radical. The carbon centred free radical thus formed is able to react with an oxygen molecule to form a peroxide compound. A range of tests can be used to detect the presence of a peroxide in an ether; one is to use a combination of iron sulfate and potassium thiocyanate. The peroxide is able to oxidize the Fe2+ ion to an Fe3+ ion which then form a deep red coordination complex with the thiocyanate. In extreme cases the peroxides can form crystalline solids within the vessel of the ether.

Unless the desiccant used can destroy the peroxides, they will concentrate during distillation due to their higher boiling point. When sufficient peroxides have formed, they can form a crystalline and shock sensitive solid precipitate. When this solid is formed at the mouth of the bottle, turning the cap may provide sufficient energy for the peroxide to detonate. Peroxide formation is not a significant problem when solvents are used up quickly; they are more of a problem for laboratories which take years to finish a single bottle. Ethers have to be stored in the dark in closed canisters in the presence of stabilizers like butylated hydroxytoluene (BHT) or over sodium hydroxide.

Peroxides may be removed by washing with acidic iron(II) sulfate, filtering through alumina, or distilling from sodium/benzophenone. Alumina does not destroy the peroxides; it merely traps them. The advantage of using sodium/benzophenone is that moisture and oxygen are removed as well.

Health Effects
General health hazards associated with solvent exposure include toxicity to the nervous system, reproductive damage, liver and kidney damage, respiratory impairment, cancer, and dermatitis.

Many solvents can lead to a sudden loss of consciousness if inhaled in large amounts. Solvents like diethyl ether and chloroform have been used in medicine as anesthetics, sedatives, and hypnotics for a long time. Ethanol (grain alcohol) is a widely used and abused psychoactive drug. Diethyl ether, chloroform, and many other solvents are used recreationally in glue sniffing, often with harmful long term health effects like neurotoxicity or cancer. Methanol can cause permanent blindness and death. It is also dangerous because it burns with an invisible flame.

It is interesting to note that ethanol has a synergistic effect when taken in combination with many solvents. For instance a combination of toluene/benzene and ethanol causes greater nausea/vomiting than either substance alone.
Some solvents including chloroform and benzene (an ingredient of gasoline) are carcinogenic. Many others can damage internal organs like the liver, the kidneys, or the brain.

Chronic exposure to organic solvents in the work environment can produce a range of adverse neuropsychiatric effects. For example, occupational exposure to organic solvents has been associated with higher numbers of painters suffering from alcoholism.

General Precautions

  • Avoid being exposed to solvent vapors by working in a fume hood, or with local exhaust ventilation (LEV), or in a well ventilated area
  • Keep the storage containers tightly closed
  • Never use open flames near flammable solvents; use central heating or electrical heating instead
  • Never flush flammable solvents down the drain; read safety data sheets for proper disposal information
  • Avoid the inhalation of solvent vapors
  • Avoid contact of the solvent with the skin — many solvents are easily absorbed through the skin. They also tend to dry the skin and may cause sores and wounds.

Environmental Contamination
A major pathway to induce health effects arises from spills or leaks of solvents that reach the underlying soil. Since solvents readily migrate substantial distances, the creation of widespread soil contamination is not uncommon; there may be about 5000 sites worldwide that have major subsurface solvent contamination; this is particularly a health risk if aquifers are affected.